Skip to main content
Full Paper

Diagnostic performance and image quality of low-tube voltage and low-contrast medium dose protocol with hybrid iterative reconstruction for hepatic dynamic CT

Published Online:



To evaluate the diagnostic performance and image quality of the low-tube voltage and low-contrast medium dose protocol for hepatic dynamic CT.


This retrospective study was conducted between January and May 2018. All patients underwent hepatic dynamic CT using one of the two protocols: tube voltage, 80 kVp and contrast dose, 370   mgI/kg with hybrid iterative reconstruction or tube voltage, 120 kVp and contrast dose, 600  mgI/kg with filtered back projection. Two radiologists independently scored lesion conspicuity and image quality. Another radiologist measured the CT numbers of abdominal organs, muscles, and hepatocellular carcinoma (HCC) in each phase. Lesion detectability, HCC diagnostic ability, and image quality of the arterial phase were compared between the two protocols using the non-inferiority test. CT numbers and HCC-to-liver contrast were compared between the protocols using the Mann–Whitney U test.


424 patients (70.5 ± 10.1 years) were evaluated. The 80-kVp protocol showed non-inferiority in lesion detectability and diagnostic ability for HCC (sensitivity, 85.7–89.3%; specificity, 96.3–98.6%) compared with the 120-kVp protocol (sensitivity, 91.0–93.3%; specificity, 93.6–97.3%) (p < 0.001–0.038). The ratio of fair image quality in the 80-kVp protocol also showed non-inferiority compared with that in the 120-kVp protocol in assessments by both readers (p < 0.001). HCC-to-liver contrast showed no significant differences for all phases (p = 0.309–0.705) between the two protocols.


The 80-kVp protocol with hybrid iterative reconstruction for hepatic dynamic CT can decrease iodine doses while maintaining diagnostic performance and image quality compared with the 120-kVp protocol.

Advances in knowledge:

The 80- and 120-kVp protocols showed equivalent hepatic lesion detectability, diagnostic ability for HCC, image quality, and HCC-to-liver contrast.

The 80-kVp protocol showed a 38.3% reduction in iodine dose compared with the 120-kVp protocol.


  • 1. Marrero JA, , Kulik LM, , Sirlin CB, , Zhu AX, , Finn RS, , Abecassis MM, , et al.. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American association for the study of liver diseases. Hepatology 2018; 68: 723–50. doi: Crossref Medline ISIGoogle Scholar

  • 2. Mohammed NMA, , Mahfouz A, , Achkar K, , Rafie IM, , Hajar R. Contrast-Induced nephropathy. Heart Views 2013; 14: 106–16. doi: Crossref MedlineGoogle Scholar

  • 3. Desbois A-C, , Cacoub P, , mellitus D. Diabetes mellitus, insulin resistance and hepatitis C virus infection: a contemporary review. World J Gastroenterol 2017; 23: 1697–711. doi: Crossref MedlineGoogle Scholar

  • 4. Szucs-Farkas Z, , Verdun FR, , von Allmen G, , Mini RL, , Vock P. Effect of X-ray tube parameters, iodine concentration, and patient size on image quality in pulmonary computed tomography angiography: a chest-phantom-study. Invest Radiol 2008; 43: 374–81. doi: Crossref Medline ISIGoogle Scholar

  • 5. Beister M, , Kolditz D, , Kalender WA. Iterative reconstruction methods in X-ray CT. Phys Med 2012; 28: 94–108. doi: Crossref Medline ISIGoogle Scholar

  • 6. Solomon J, , Marin D, , Roy Choudhury K, , Patel B, , Samei E. Effect of radiation dose reduction and reconstruction algorithm on image noise, contrast, resolution, and detectability of subtle hypoattenuating liver lesions at multidetector CT: filtered back projection versus a commercial model-based iterative reconstruction algorithm. Radiology 2017; 284: 777–87. doi: Medline ISIGoogle Scholar

  • 7. Stiller W. Basics of iterative reconstruction methods in computed tomography: a vendor-independent overview. Eur J Radiol 2018; 109: 147–54. doi: Crossref Medline ISIGoogle Scholar

  • 8. Nakaura T, , Nakamura S, , Maruyama N, , Funama Y, , Awai K, , Harada K, , et al.. Low contrast agent and radiation dose protocol for hepatic dynamic CT of thin adults at 256-detector row CT: effect of low tube voltage and hybrid iterative reconstruction algorithm on image quality. Radiology 2012; 264: 445–54. doi: Crossref Medline ISIGoogle Scholar

  • 9. Taguchi N, , Oda S, , Utsunomiya D, , Funama Y, , Nakaura T, , Imuta M, , et al.. Using 80 kVp on a 320-row scanner for hepatic multiphasic CT reduces the contrast dose by 50 % in patients at risk for contrast-induced nephropathy. Eur Radiol 2017; 27: 812–20. doi: Crossref Medline ISIGoogle Scholar

  • 10. Willemink MJ, , de Jong PA, , Leiner T, , de Heer LM, , Nievelstein RAJ, , Budde RPJ, , et al.. Iterative reconstruction techniques for computed tomography Part 1: technical principles. Eur Radiol 2013; 23: 1623–31. doi: Crossref Medline ISIGoogle Scholar

  • 11. Yoon JH, , Lee JM, , Hur BY, , Baek J, , Shim H, , Han JK, , et al.. Influence of the adaptive iterative dose reduction 3D algorithm on the detectability of low-contrast lesions and radiation dose repeatability in abdominal computed tomography: a phantom study. Abdom Imaging 2015; 40: 1843–52. doi: Crossref MedlineGoogle Scholar

  • 12. American College of Radiology Committee on LI-RADS®. CT/MRI LI-RADS® v2018 Core.. Available from: [Accessed on July 12, 2021]. Google Scholar

  • 13. Zhou XH, , Obuchowski NA, , McClish DK. Statistical Methods in Diagnostic Medicine. Second Edition. New York, NY: Wiley; 2002. pp. 189–92. CrossrefGoogle Scholar

  • 14. Lanotte SJ, , Larbi A, , Michoux N, , Baron M-P, , Hamard A, , Mourad C, , et al.. Value of CT to detect radiographically occult injuries of the proximal femur in elderly patients after low-energy trauma: determination of non-inferiority margins of CT in comparison with MRI. Eur Radiol 2020; 30: 1113–26. doi: Crossref Medline ISIGoogle Scholar

  • 15. Xin Y, , Zhang X, , Yang Y, , Chen Y, , Wang Y, , Zhou X, , et al.. A multicenter, hospital-based and non-inferiority study for diagnostic efficacy of automated whole breast ultrasound for breast cancer in China. Sci Rep 2021; 11: 13902. doi: Crossref Medline ISIGoogle Scholar

  • 16. Tiegs-Heiden CA, , Adkins MC, , Carter RE, , Geske JR, , McKenzie GA, , Ringler MD. Does gadolinium improve magnetic resonance arthrography of the hip beyond fluid distension alone? Clin Radiol 2020; 75: 713.e1–713.e9. doi: Crossref ISIGoogle Scholar

  • 17. Pregler B, , Beyer LP, , Teufel A, , Niessen C, , Stroszczynski C, , Brodoefel H, , et al.. Low tube voltage liver MDCT with sinogram-affirmed iterative reconstructions for the detection of hepatocellular carcinoma. Sci Rep 2017; 7: 9460. doi: Crossref Medline ISIGoogle Scholar

  • 18. Noda Y, , Kanematsu M, , Goshima S, , Kondo H, , Watanabe H, , Kawada H, , et al.. Reducing iodine load in hepatic CT for patients with chronic liver disease with a combination of low-tube-voltage and adaptive statistical iterative reconstruction. Eur J Radiol 2015; 84: 11–18. doi: Crossref Medline ISIGoogle Scholar

  • 19. Lee CH, , Kim KA, , Lee J, , Park YS, , Choi JW, , Park CM. Using low tube voltage (80kVp) quadruple phase liver CT for the detection of hepatocellular carcinoma: two-year experience and comparison with Gd-EOB-DTPA enhanced liver MRI. Eur J Radiol 2012; 81: e605–11. doi: Crossref Medline ISIGoogle Scholar

  • 20. Sun H, , Xue H-dan, , Jin Z-yu, , Wang X, , Chen Y, , He Y-lan, , et al.. Non-enhanced low-tube-voltage high-pitch dual-source computed tomography with sinogram affirmed iterative reconstruction algorithm of the abdomen and pelvis. Chin Med Sci J 2014; 29: 214–20. doi: Crossref MedlineGoogle Scholar

  • 21. Nakaura T, , Awai K, , Oda S, , Funama Y, , Harada K, , Uemura S, , et al.. Low-kilovoltage, high-tube-current MDCT of liver in thin adults: pilot study evaluating radiation dose, image quality, and display settings. AJR Am J Roentgenol 2011; 196: 1332–8. doi: Crossref Medline ISIGoogle Scholar

  • 22. Liu S, , Sheng H, , Shi H, , Li W, , Fan J, , He J, , et al.. Computed tomography portography of patients with cirrhosis with normal body mass index: comparison between low-tube-voltage CT with low contrast agent dose and conventional CT. Medicine 2018; 97: e13141. doi: Crossref Medline ISIGoogle Scholar

  • 23. Iyama Y, , Nakaura T, , Yokoyama K, , Kidoh M, , Harada K, , Tokuyasu S, , et al.. Impact of knowledge-based iterative model reconstruction in abdominal dynamic CT with low tube voltage and low contrast dose. AJR Am J Roentgenol 2016; 206: 687–93. doi: Crossref Medline ISIGoogle Scholar

  • 24. Araki K, , Yoshizako T, , Yoshida R, , Tada K, , Kitagaki H. Low-voltage (80-kVp) abdominopelvic computed tomography allows 60% contrast dose reduction in patients at risk of contrast-induced nephropathy. Clin Imaging 2018; 51: 352–5. doi: Crossref Medline ISIGoogle Scholar

  • 25. Svensson A, , Thor D, , Fischer MA, , Brismar T. Dual source abdominal computed tomography: the effect of reduced X-ray tube voltage and intravenous contrast media dosage in patients with reduced renal function. Acta Radiol 2019; 60: 293–300. doi: Crossref Medline ISIGoogle Scholar

  • 26. Nakaura T, , Nagayama Y, , Kidoh M, , Nakamura S, , Namimoto T, , Awai K, , et al.. Low contrast dose protocol involving a 100 kVp tube voltage for hypervascular hepatocellular carcinoma in patients with renal dysfunction. Jpn J Radiol 2015; 33: 566–76. doi: Crossref Medline ISIGoogle Scholar

Newly Published, ePub Ahead of Issue
Supplemental Materials

© 2021 The Authors. Published by the British Institute of Radiology


  • RevisedAugust 22,2021
  • ReceivedMay 14,2021
  • AcceptedAugust 31,2021
  • Published onlineSeptember 29,2021