Skip to main content
Full paper

PARP inhibitors and cancer therapy — early results and potential applications

Published Online:


Polyadenosine diphosphate-ribose polymerase (PARP) inhibitors are emerging as an exciting new class of agents for treating cancer. There is pre-clinical evidence for their use to potentiate both chemotherapeutic agents and radiotherapy, and also as single agents. This paper discusses the early clinical work published showing their use in combination with temozolomide in malignant melanoma, and in familial (BRCA-related) cancers.


  • 1 Ames BN, Gold LS. Endogenous mutagens and the causes of aging and cancer. Mutat Res 1991;250:3–16. Crossref Medline ISIGoogle Scholar

  • 2 Bernstein C, Bernstein H, Payne CM, Garewal H. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 2002;511(2):145–78. ISIGoogle Scholar

  • 3 Hansen K, Kelly M. Review of mammalian DNA repair and translational implications. J Pharmacol Exp Ther 2000;295(1):1–9. ISIGoogle Scholar

  • 4 Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001;411:360–74. Crossref ISIGoogle Scholar

  • 5 Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004;10(8):789–99. ISIGoogle Scholar

  • 6 Madhusudan S, Middleton MR. The emerging role of DNA repair proteins as predictive, prognostic and therapeutic targets in cancer. Cancer Treat Rev 2005;31(8):603–17. ISIGoogle Scholar

  • 7 Bradbury PA, Middleton MR. DNA repair pathways in drug resistance in melanoma. Anticancer Drugs 2004;15(5):421–6. ISIGoogle Scholar

  • 8 Purnell MR, Whish WJD. Novel inhibitors of poly(ADP-ribose) synthetase. Biochem J 1980;185:775–7. Crossref Medline ISIGoogle Scholar

  • 9 Griffin RJ, Pemberton LC, Rhodes D, Bleasdale C, Bowman K, Calvert AH, et al. Novel potent inhibitors of the DNA repair enzyme poly(ADP-ribose)polymerase (PARP). Anticancer Drug Des 1995;10(6):507–14. Google Scholar

  • 10 Curtin N. PARP inhibitors for cancer therapy. Expert reviews in molecular medicine 2005;7(4):1–20. Google Scholar

  • 11 Southan G, Szabo C. Poly(ADP-ribose) ploymerase inhibitors. Curr Med Chem 2003;10:321–40. Crossref Medline ISIGoogle Scholar

  • 12 Bowman KJ, White A, Golding BT, Griffin RJ, Curtin NJ. Potentiation of anti-cancer agent cytotoxicity by the potent poly(ADP-ribose) polymerase inhibitors NU1025 and NU1064. Br J Cancer 1998;78:1269–77. Crossref Medline ISIGoogle Scholar

  • 13 Boulton S, Pemberton LC, Porteous JK, Curtin NJ, Griffin RJ, Golding BT, et al. Potentiation of temozolomide-induced cytotoxicity: a comparative study of the biological effects of poly(ADP-ribose) polymerase inhibitors. Br J Cancer 1995;72:849–56. Crossref Medline ISIGoogle Scholar

  • 14 Delaney CA, Wang LZ, Kyle S, White AW, Calvert AH, Curtin NJ, et al. Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly(adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin Cancer Res 2000;6(7):2860–7. ISIGoogle Scholar

  • 15 Miknyoczki SJ, Jones-Bolin S, Pritchard S, Hunter K, Zhao H, Wan W, et al. Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol Cancer Ther 2003;2:371–82. Crossref Medline ISIGoogle Scholar

  • 16 Tentori L, Leonetti C, Scarsella M, D'Amati G, Vergati M, Portarena I, et al. Systemic administration of GPI 15427, a novel poly(ADP-ribose) polymerase-1 inhibitor, increases the antitumor activity of temozolomide against intracranial melanoma, glioma, lymphoma. Clin Cancer Res 2003;9(14):5370–9. ISIGoogle Scholar

  • 17 Cheng CL, Johnson SP, Keir ST, Quinn JA, Ali-Osman F, Szabo C, et al. Poly(ADP-ribose) polymerase-1 inhibition reverses temozolomide resistance in a DNA mismatch repair-deficient malignant glioma xenograft. Mol Cancer Ther 2005;4:1364–8. Crossref Medline ISIGoogle Scholar

  • 18 Albert J, Cao C, Kim K, Willey C, Geng L, Xiao D, et al. Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res 2007;13(10):3033–42. ISIGoogle Scholar

  • 19 Thomas HD, Calabrese CR, Batey MA, Canan S, Hostomsky Z, Kyle S, et al. Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Mol Cancer Ther 2007;6(3):945–56. ISIGoogle Scholar

  • 20 Durkacz B, Omidiji O, Gray D, Shall S. (ADP-ribose)n participates in DNA excision repair. Nature 1980;283:593–6. Crossref Medline ISIGoogle Scholar

  • 21 Newlands ES, Stevens MFG, Wedge SR, Wheelhouse RT, Brock C. Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 1997;23:35–61. Crossref Medline ISIGoogle Scholar

  • 22 Tentori L, Graziani G, Gilberti S, Lacal PM, Bonmassar E, D'Atri S. Triazene compounds increase apoptosis in O6-alkylguanine-DNA alkyltransferase deficient leukaemic cell lines. Leukemia 1995;9:1888–95. Medline ISIGoogle Scholar

  • 23 Hickman MJ, Samson LD. Role of DNA mismatch repair and p53 in signalling induction of apoptosis by alkylating agents. Proc Natl Acad Sci U S A 1999;96:10764–9. Crossref Medline ISIGoogle Scholar

  • 24 Karran P, Hampson R. Genomic instability and tolerance to alkylating agents. Cancer Surv 1996;28:69–85. MedlineGoogle Scholar

  • 25 D'Atri S, Tentori L, Lacal PM, Graziani G, Pagani E, Benincasa E, et al. Involvement of the mismatch repair system in temozolomide-induced apoptosis. Mol Pharmacol 1998;54(2):334–41. ISIGoogle Scholar

  • 26 Fink D, Aebi S, Howell S. The role of DNA mismatch repair in drug resistance. Clin Cancer Res 1998;4:1–6. Medline ISIGoogle Scholar

  • 27 Plummer ER, Middleton MR, Jones C, Olsen A, Hickson I, McHugh P, et al. Temozolomide pharmacodynamics in patients with metastatic melanoma: DNA damage and activity of repair enzymes O6-alkylguanine alkyltransferase and poly(ADP-ribose) polymerase-1. Clin Cancer Res 2005;11:3402–9. Crossref Medline ISIGoogle Scholar

  • 28 Plummer ER, Middleton MR, Wilson R, Evans J, Robson L, Steinfeldt H, et al. First in human phase I trial of the PARP inhibitor AG-014699 with temozolomide (TMZ) in patients (pts) with advanced solid tumors. Proc Am Soc Clin Oncol 2005 Google Scholar

  • 29 Plummer ER, Lorigan P, Evans J, Steven N, Middleton M, Wilson R, et al. First and final report of a phase II study of the poly(ADP-ribose) polymerase (PARP) inhibitor, AG014699, in combination with temozolomide (TMZ) in patients with metastatic malignant melanoma (MM). J Clin Oncol 2006;24(18s):456s Google Scholar

  • 30 Staibano S, Pepe S, Lo Muzio L, Somma P, Mascolo M, Argenziano G, et al. Poly(adenosine diphosphate-ribose) polymerase 1 expression in malignant melanomas from photoexposed areas of the head and neck region. Hum Pathol 2005;36(7):724–31. ISIGoogle Scholar

  • 31 Shiobara M, Miyazaki M, Ito H, Togawa A, Nakajima N, Nomura F, et al. Hepatocellular carcinoma: treatment and recurrence marker. J Gastroenterol Hepatol 2001;16:338–44. Crossref Medline ISIGoogle Scholar

  • 32 Hirai K, Ueda JC, Hayaishi O. Aberration of poly(adenosine diphosphate-ribose) metabolism in human cancer adenomatour polyps and cancers. Cancer Res 1983;43:3441–6. Medline ISIGoogle Scholar

  • 33 Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005;434(7035):913–17. ISIGoogle Scholar

  • 34 Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005;434(7035):917–21. ISIGoogle Scholar

  • 35 Fong P, Spicer J, Reade S, Reid A, Vidal L, Schellens J, et al. Phase I pharmacokinetic (PK) and pharmacodynamic (PD) evaluation of a small molecule inhibitor of poly ADP-ribose polymerase (PARP), KU-0059436 (Ku) in patients (p) with advanced tumours. J Clin Oncol 2006;24(Suppl):3022 Google Scholar

  • 36 McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 2006;66:8109–15. Crossref Medline ISIGoogle Scholar

  • 37 Tutt AN, Lord CJ, McCabe N, Farmer H, Turner N, Martin NM, et al. Exploiting the DNA repair defect in BRCA mutant cells in the design of new therapeutic strategies for cancer. Cold Spring Harb Symp Quant Biol 2005;70:139–48. Crossref MedlineGoogle Scholar

  • 38 Turner N, Tutt A, Ashworth A. Hallmarks of BRCA-ness in sporadic cancer. Nat Rev Cancer 2004;4:814–19. Crossref Medline ISIGoogle Scholar

Volume 81, Issue special_issue_1October 2008
Pages: S1-S77

© The British Institute of Radiology


  • ReceivedJune 13,2007
  • AcceptedMay 07,2008
  • Published onlineJanuary 28,2014


The author gratefully acknowledges the work and advice from colleagues in NICR who collaborated on the PARP inhibitor clinical programmes that are reported here.

This research has had generous support from Cancer Research UK and from Pfizer GRD.